

	
			
			
			[image:]	

	
				
			
				
			
				
	
		
			
	
	Part Number	Hot Search :
			

						DB105			KSC521G			2N577			MD154			V630M			00BGI			ST2060			LC74772V			

			
	
	Product Description

			
	
	Full Text Search

				

		
		
		

			

			
				 	
				To Download
				AN241 Datasheet File

	
				
				If you can't view the
				Datasheet, Please click here to try to view without PDF Reader .	
				

[image:]

			
				
					

				　

			

	

	

		

			
				

				

			

		

		

		 Datasheet File OCR Text:

		 AN241
2.4 GHZ ZIGBEETM NETWORK APPLICATION INTERFACE PROGRAMMER'S GUIDE
1. Introduction
This document describes the Silicon Laboratories ZigBee Network Layer interface. It contains implementation details specific to the Network-layer interface software library included as part of the Silicon Laboratories ZigBee Development Kit. This document should be used in conjunction with the ZigBee Alliance's Network Specification. Current firmware releases do not support beacon-based networks or security.
2. Overview of Primitive Implementation
Messaging between the application layer and the network layer is implemented either by direct function calls or by using a shared buffer. Primitives transmitted from the application layer to the network layer are implemented using direct function calls. In contrast, primitives sent from the network layer to the application layer are implemented differently. Indication primitives notifying an event to the application layer will be stored in a shared buffer. The application layer needs to poll this buffer for an incoming event. Some confirmation primitives carry only one parameter, normally a status indicator corresponding to a request. The parameter is conveyed as a return value of the requesting function call. Thus, there is no explicit implementation of these primitives. Other confirmation primitives contain more than one parameter. When a request is called, the function call of the request will store the confirmation data to the shared buffer. The caller of the request shall check the buffer for confirmation when the request returns.
Table 1. Primitive Implementation
Primitive Request Confirm (one parameter) Confirm (multiple parameters) Indication Implementation Direct function call Return value of the request function call Globally shared buffer Globally shared buffer
Rev. 0.1 9/05
Copyright (c) 2005 by Silicon Laboratories
AN241
AN241
3. Creating User Applications
The Application layer must start the ZigBee network in a specified sequence. This section describes initialization, network startup, and joining procedures.
3.1.
System Initialization
These functions should be called in order as the node is initially powered up. Disable Global Interrupts:
DISABLE_GLOBAL_INT();
Initialize System Hardware:
SystemInit();
Initialize Transceiver:
CC2420Init();
Initialize Transceiver Interrupt:
EINT_Init ();
Initialize MAC Internal Variables and Default PIB settings:
MAC_Init(); macInitEnv(); mlmeResetRequest(FALSE);
Initialize NWK layer:
netInit();
Enable Global Interrupts:
ENABLE_GLOBAL_INT();
2
Rev. 0.1
AN241
3.2. Network-level Procedures
This section describes the processes of establishing, expanding, and dismantling a ZigBee network. Sections 4 and 5 describe each command primitive in detail. A ZigBee network is established by the steps shown in Figure 1.
1. Reset and initialize each device as it is powered up. 2. Establish a ZigBee network by designating a Coordinator. The Coordinator calls specific primitives to form the network then permits other nodes to join. Refer to section 3.2.2. 3. Once a network is formed, other devices may join the network and transfer data to other nodes within the network. Refer to sections 3.2.3 and 3.2.4. 4. Devices may request removal from a network or a parent may force a node from the network. Refer to section 3.2.5.
ZigBee Coordinator 1 Reset
ZigBee Device Reset
2
Form Network
Permit other nodes to join network
Discover a network
3
Join a network
Configure self as router (optional)
Poll for incoming data
Transfer data
Leave network
4
Figure 1. ZigBee Network Formation
Rev. 0.1
3
AN241
3.2.1. Initialization Each device must be reset via the NLME-RESET primitive immediately on powerup. 3.2.2. Starting a ZigBee Coordinator A network is established by designating a node as the ZigBee Coordinator. The Application layer must first instruct the Coordinator to form a network then must permit other ZigBee devices to join the network. This is illustrated in Figure 2. For a more robust design, the Coordinator's nlmeNetworkFormationRequest()will usually include an active scan to detect its neighboring environment. One possible SCAN outcome will be PAN ID conflict. This is a very important exception that programmers should be aware of so any problem can be handled and detected before the Coordinator starts. "Permit Join" can be used creatively. Many examples have been discussed suggesting that "Permit Join" is toggled on and off by a simple push button. This is one idea how the Coordinator can fend off unsolicited JOIN requests and protect the integrity of the subject network.
ZigBee Coordinator Application Layer
Network Layer
nlmeResetRequest(...)
confirmation by return value of nlmeResetRequest(...)
nlmeNetworkFormationRequest(...)
confirmation by return value of nlmeNetworkFormationRequest(...)
nlmePermitJoiningRequest(...)
confirmation by return value of nlmePermitJoiningRequest(...)
Figure 2. Establishing a Network and Enabling Nodes to Join
4
Rev. 0.1
AN241
3.2.3. Constructing the Network Remote devices may join once a core network has been established. New devices (children) can connect to existing devices (parents) through either association or direct connection. 3.2.3.1. Joining Through Association In association, the child proactively discovers the network. Once discovered, the child requests a connection as shown in Figure 3.
Child ZigBee Application Layer
Child Network Layer
Parent Network Layer
Parent ZigBee Application Layer
nlmeResetRequest(...)
confirmation by return value of nlmeResetRequest(...)
nlmeNetworkDiscoveryRequest(...)
confirmation written to nlmeConfirm global
Application selects PAN to join. Confirmation returns PAN ID's of available networks.
nlmeJoinRequest(...)
Device requests to join selected PAN.
confirmation written to nlmeConfirm global
indication written to nlmeConfirm global
Authetification (if security enabled)
nlmeStartRouterRequest(...)
Optional enable as routing node.
confirmation by return value of nlmeStartRouterRequest(...)
Figure 3. Child Joins Network Through Discovery and Association (Optional Configuration as a Routing Node After Association)
Rev. 0.1
5
AN241
3.2.3.2. Direct Joining Direct joining is used to reestablish a previous connection. The parent device first adds the child device back into its network. The child must then attempt reconnection. This is most commonly used when a child device is temporarily disconnected ("orphaned") from the network. This is illustrated in Figure 4.
Parent ZigBee Application Layer
Parent Network Layer
Child Network Layer
Child ZigBee Application Layer
nlmeDirectJoinRequest(...)
Check to ensure extended address present or new NWK address can be assigned.
confirmation written to nlmeConfirm global
Confirmation returns PAN ID's of available networks.
nlmeJoinRequest(rejoinNetwork=TRUE)
confirmation written to nlmeConfirm global
Figure 4. Rejoining a Network
6
Rev. 0.1
AN241
3.2.4. Data Transfer ZigBee networks can be categorized into two basic operating types, beacon-enabled networks and non-beacon networks. The network type is determined when the PAN Coordinator forms the network. The data transfer operation is different for the two types. 3.2.4.1. Uploading Data In non-beacon networks, the Coordinator's receiver is always enabled. Thus, devices can send data to the Coordinator at any time*. In beacon-enabled networks, devices need to synchronize with a beacon first, locate the appropriate timeslot, then send data in the designated periods of a superframe. 3.2.4.2. Downloading Data When the Coordinator wants to send data to its Child devices, it needs to follow different procedures depending upon the receiver state of the destination device. Normally, if the receiver of the destination device is always enabled while idle, data will be sent out during the active periods of a superframe. Indirect transmission may also be used. If the end device disables its receiver when idle, the Coordinator needs to use indirect data transmission. The firmware will put the data in an indirect queue for devices to poll. 3.2.4.3. Synchronizing and Polling for Data It is the Application layer's responsibility to call nlmeSyncRequest() periodically to sync with its parent for pending data. The calling period is dependent upon specific applications. In non-beacon networks, the sync request will trigger the lower layer to send a command requesting pending data from the Coordinator. In beacon-enabled networks, this request will enable a search for the next beacon and automatically request pending data if pending data are indicated in the beacon.
*Note: It is possible that in non-beacon networks the whole system goes to sleep for a period in which devices cannot send data to Coordinators. Nevertheless, devices should normally be in a sleep state in that time too.
Rev. 0.1
7
AN241
3.2.5. Dissolving the Network Devices may be disconnected from the network one-by-one. A child may proactively disconnect from its parent, or the parent may break the network connection to a child, shown in Figure 5 and Figure 6, respectively. 3.2.5.1. Disconnection Initiated by Child
Child ZigBee Application Layer
Child Network Layer
Parent Network Layer
Parent ZigBee Application Layer
nlmeLeaveRequest(deviceAddress=NULL)
confirmation written to nlmeConfirm global
indication written to nlmeConfirm global
nlmeResetRequest(...)
confirmation by return value of nlmeResetRequest(...)
Figure 5. Child Initiates Disconnection from Network
3.2.5.2. Disconnection Initiated by Parent
Parent ZigBee Application Layer
Parent Network Layer
Child Network Layer
Child ZigBee Application Layer
nlmeLeaveRequest(deviceAddress=)
confirmation written to nlmeConfirm global
indication written to nlmeConfirm global
nlmeResetRequest(...)
confirmation by return value of nlmeResetRequest(...)
Figure 6. Parent Initiates Disconnection of Child
8
Rev. 0.1
AN241
4. Network Layer Data Entity (NLDE-) Commands
Name NLDE-DATA Request 4.1.2 Indication 4.1.3 Response Confirm 4.1.4
4.1.
NLDE-DATA
All devices. Device must be associated. This primitive requests the transfer of a data PDU (NSDU) from the local APS sub-layer entity to a single or multiple peer APS sub-layer entity. void nldeDataRequest(NLDE_DATA_REQUEST *pNldeDataRequest); typedef struct{ WORD dstAddr; BYTE nsduHandle; BYTE broadcastRadius; BOOL discoverRoute; BOOL securityEnable; BYTE nsduLength; BYTE *pNsdu; }NLDE_DATA_REQUEST; (defined in HS_NET.h) NLDE_DATA_REQUEST *pNldeDataRequest A pointer to the data structure of NLDE_DATA_REQUEST where all the arguments are available for the function. WORD dstAddr The network address of the entity or entities to which the NSDU is being transferred. BYTE nsduHandle The handle associated with the NSDU to be transmitted by the NWK layer entity. BYTE broadcastRadius The distance, in hops, that a broadcast frame will be allowed to travel through the network. BOOL discoverRoute The DiscoverRoute parameter may be used to enable route discovery operations for the transit of this frame. BOOL securityEnable The SecurityEnable parameter may be used to enable NWK layer security processing for the current frame. BYTE nsduLength The number of octets comprising the NSDU to be transferred. BYTE * pNsdu A pointer to the packet payload.
4.1.1. Description Applicability: Prerequisites: 4.1.2. Request Description: Function Prototype Parameters:
Rev. 0.1
9
AN241
4.1.3. Indication Description: Results: Indication written to nlmeConfirm global. nlmeConfirm.confirmId = N_DATA_IND; nlmeConfirm.buffer structure: typedef struct { WORD srcAddress; BYTE linkQuality; BYTE nsduLength; BYTE *pNsdu; }NLDE_DATA_INDICATION; (defined in HS_NET.h) WORD srcAddress The individual device address from which the NSDU originated. BYTE linkQuality The link quality indication delivered by the MAC on receipt of this frame as a parameter of the MCPS-DATA.indication primitive. BYTE nsduLength The number of octets comprising the NSDU being indicated. BYTE* pNsdu The pointer to the set of octets comprising the NSDU being indicated. 4.1.4. Confirm Description: Results: Confirmation written to nlmeConfirm global. nlmeConfirm.confirmId = N_DATA_CFM; nlmeConfirm.buffer structure: typedef struct { NWK_ENUM status; BYTE nsduHandle; }NLDE_DATA_CONFIRM; (defined in HS_NET.h) NWK_ENUM status INVALID_REQUEST or any status values returned from security suite or the MCPSDATA.confirm primitive (SUCCESS | TRANSACTION_OVERFLOW | TRANSACTION_EXPIRED | CHANNEL_ACCESS_FAILURE | INVALID_GTS | NO_ACK | UNAVAILABLE_KEY | FRAME_TOO_LONG | FAILED_SECURITY_CHECK) BYTE nsduHandle A handle to this packet from the mcpsDataRequest() function.
10
Rev. 0.1
AN241
5. Network Layer Management Entity (NLME-) Commands
Name NLME-NETWORK-DISCOVERY NLME-NETWORK-FORMATION NLME-PERMIT-JOINING NLME-START-ROUTER NLME-JOIN NLME-DIRECT-JOIN NLME-LEAVE NLME-RESET NLME-SYNC NLME-GET NLME-SET Request 5.1.2 5.2.2 5.3.2 5.4.2 5.5.2 5.6.2 5.7.2 5.8.2 5.9.2 5.10.2 5.11.2 5.9.3 5.7.3 5.5.3 Indication Response Confirm 5.1.3 5.2.3 5.3.3 5.4.3 5.5.4 5.6.3 5.7.4 5.8.3 5.9.4 5.10.3 5.11.3
Rev. 0.1
11
AN241
5.1. NLME-NETWORK-DISCOVERY
5.1.1. Description This primitive instructs the device's network layer to search for networks within connection range. The search operation will populate a list of available networks along with the characteristics of each. Applicability: Prerequisite: 5.1.2. Request Description: Function Prototype: Parameters: This function is called to request that the NWK layer discover networks currently operating within range. void nlmeNetworkDiscoveryRequest(UINT32 scanChannels, UINT8 scanDuration) UINT32 scanChannels 32 bit long value. The five most significant bits (b27, ... ,b31) are reserved. The 27 least significant bits (b0, b1, ... b26) indicate which channels are to be scanned (1 = scan, 0 = do not scan) for each of the 27 valid channels. UINT8 scanDuration 8 bit long unsigned character. Valid between 0 and 0x0E. A value used to calculate the length of time to spend scanning each channel. The time spent scanning each channel is (aBaseSuperframeDuration * (2n + 1)) symbols, where n is the value of the ScanDuration parameter. Constant aBaseSuperframeDuration is defined in the IEEE 802.15.4 Standard. 5.1.3. Confirm Description: Results: Confirmation written to nlmeConfirm global. nlmeConfirm.confirmId = N_DISC_CFM; nlmeConfirm.buffer structure: typedef struct{ BYTE NetworkCount; NETWORK_DESCRIPTOR nwkDescriptor[MAX_USE_CHANNEL_COUNT]; MAC_ENUM Status; }NLME_NETWORK_DISCOVERY_CONFIRM; (defined in HS_NET.h) typedef struct { WORD panID; BYTE logicalChannel; BYTE stackProfile; BYTE zigBeeVersion; BYTE beaconOrder; BYTE superFrameOrder; BOOL permitJoining; BYTE securityLevel; }NETWORK_DESCRIPTOR; (defined in HS_NET.h) BYTE NetworkCount Number of networks discovered during the search. All device types. NLME-RESET
12
Rev. 0.1
AN241
nwkDescriptor List of descriptors for each of the NetworkCount networks. One entry of type NETWORK_DESCRIPTOR for each network found. MAC_ENUM Status Status after the search. SUCCESS: successful search (minimum 1 network found) NO_BEACON: no beacons detected during active scan INVALID_PARAMETER: unsupported parameter or parameter out of range. List entry, one per discovered network: WORD panID The 16-bit PAN identifier of the discovered network. The 2 highest-order bits of this parameter are reserved and shall be set to 0. BYTE logicalChannel The current logical channel occupied by the network BYTE stackProfile A ZigBee stack profile identifier indicating the stack profile in use in the discovered network. BYTE zigBeeVersion The version of the ZigBee protocol in use in the discovered network. BYTE beaconOrder This specifies how often the MAC sub-layer beacon is to be transmitted by a given device on the network. BYTE superFrameOrder For beacon-enabled networks, i.e. beacon order < 15, this specifies the length of the active period of the superframe. BOOL permitJoining Value of TRUE indicates that at least one ZigBee router on the network currently permits joining, i.e. its NWK has been issued an NLME-PERMIT-JOINING primitive and the time limit, if given, has not yet expired. BYTE securityLevel The security level used in a security-enabled PAN. This parameter is not specified in the ZigBee v1.0 specification.
Rev. 0.1
13
AN241
5.2. NLME-NETWORK-FORMATION
5.2.1. Description This primitive instructs a device to initialize itself as the coordinator of a new ZigBee network. Applicability: Prerequisite: 5.2.2. Request Description: Function Prototype: This primitive allows the next higher layer to request that the device start a new ZigBee network with itself as the coordinator. NWK_ENUM nlmeNetworkFormationRequest(UINT32 scanChannels, BYTE scanDuration, BYTE beaconOrder, BYTE superframeOrder, WORD panID, BOOL batteryLifeExtension) large UINT32 scanChannels The five most significant bits (b27, ... ,b31) are reserved. The 27 least significant bits (b0, b1, ... b26) indicate which channels are to be scanned (1 = scan, 0 = do not scan) for each of the 27 valid channels. UINT8 scanDuration A value used to calculate the length of time to spend scanning each channel. BYTE beaconOrder In star mode or tree mode this specifies the beacon order of the network that the higher layers wish to form. In MESH_MODE there are no beacons and this parameter should be set equal to 0x0F. BYTE superframeOrder In star mode or tree mode this specifies the superframe order of the network that the higher layers wish to form. In MESH_MODE there are no beacons and this parameter may be omitted. If the parameter is supplied, it will be ignored. WORD panID An optional PAN identifier that may be supplied if higher layers wish to establish this network with a predetermined identifier. (0x0000 - 0x3FFF) If PANId is not specified (i.e. panID = NULL) the NWK layer will choose a PAN ID. BOOL batteryLifeExtension If this value is TRUE, the NLME will request that the ZigBee coordinator is started supporting battery life extension mode. If this value is FALSE, the NLME will request that the ZigBee coordinator is started without supporting battery life extension mode. Applies to Coordinator only. Device is Coordinator-capable (FFD) and not already established in a network. NLME-RESET should be issued beforehand.
Parameters:
14
Rev. 0.1
AN241
5.2.3. Confirm Description: Returned Values: Confirmation by return value of nlmeNetworkFormationRequest, type NWK_ENUM (See Section "6.1.1. NWK_ENUM" on page 28). SUCCESS: INVALID_REQUEST: Selected device is unable to start as a coordinator. STARTUP_FAILURE: Device is unable to start as coordinator without conflicting with another existing Pan ID or channel assignment. NO_SHORT_ADDRESS: UNAVAILABLE_KEY: Key not found (secure mode) FRAME_TOO_LONG: FAILED_SECURITY_CHECK: INVALID_PARAMETER: Unsupported parameter or parameter out of range.
Rev. 0.1
15
AN241
5.3. NLME-PERMIT-JOINING
5.3.1. Description This primitive opens a Coordinator or Router to accept other devices to its network. Applicability: Prerequisite: Applies to Coordinator or Routers only. Device already started as Coordinator or Router. NLME-NETWORK-FORMATION (Coordinator), or NLME-START-ROUTER (Router) This function allows the next higher layer of a ZigBee coordinator or router to set its MAC sub-layer association permit flag for a fixed period during which it may accept devices onto its network. NWK_ENUM nlmePermitJoiningRequest(BYTE permitDuration) BYTE permitDuration The length of time in seconds during which the ZigBee coordinator or router will allow associations. The values 0x00 and 0xff indicate that permission is disabled or enabled, respectively, without a specified time limit. Confirmation by return value of nmlePermitJoiningRequest, type NWK_ENUM (See Section "6.1.1. NWK_ENUM" on page 28). SUCCESS: INVALID_REQUEST: Occurs if issued to a ZigBee end device. UNSUPPORTED_ATTRIBUTE: INVALID_PARAMETER:
5.3.2. Request Description:
Function Prototype: Parameters:
5.3.3. Confirm Description: Returned Values:
16
Rev. 0.1
AN241
5.4. NLME-START-ROUTER
5.4.1. Description 5.4.2. Request Description: This function allows the next higher layer of a ZigBee router to initialize or change its superframe configuration. It also allows the next higher layer of a ZigBee coordinator to change its superframe configuration. NWK_ENUM nlmeStartRouterRequest(BYTE beaconOrder, BYTE superframeOrder, BOOL BatteryLifeExtension) BYTE beaconOrder In star mode or tree mode this specifies the beacon order of the network that the higher layers wish to form. (0x00-0x0F) In MESH_MODE there are no beacons and this parameter will be set equal to 0x0F. BYTE superframeOrder In star mode or tree mode this specifies the superframe order of the network that the higher layers wish to form. (0x00-0x0F) In MESH_MODE there are no beacons and this parameter may be omitted. If the parameter is supplied, it will be ignored. BOOL BatteryLifeExtension If this value is TRUE, the NLME will request that the ZigBee coordinator is started supporting battery life extension mode. If this value is FALSE, the NLME will request that the ZigBee coordinator is started without supporting battery life extension mode. 5.4.3. Confirm Description: Returned Values: Confirmation by return value of nlmeStartRouterRequest, type NWK_ENUM (See Section "6.1.1. NWK_ENUM" on page 28). INVALID_REQUEST or any status value (SUCCESS, NO_SHORT_ADDRESS, UNAVAILABLE_KEY,FRAME_TOO_LONG, FAILED_SECURITY_CHECK or INVALID_PARAMETER) returned from the mlmeStartRequest function.
Function Prototype: Parameters:
Rev. 0.1
17
AN241
5.5. NLME-JOIN
5.5.1. Description Applicability: Prerequisites: 5.5.2. Request Description: Function Prototype: This primitive allows the next higher layer to request to join a network either through association or directly or to re-join a network if orphaned. void nlmeJoinRequest(WORD panId, BOOL joinAsRouter, rejoinNetwork, UINT32 scanChannels, BYTE scanDuration, powerSource, BYTE rxOnWhenIdle, BYTE macSecurity) large BOOL BYTE Allows Child to join network. NLME-RESET must occur before NLME-JOIN
Parameters:
WORD panId The PAN identifier of the network to attempt to join or re-join. (0x0000-0x3FFF). Select from available networks shown in nwkDescriptor list from NLME-NETWORKDISCOVERY request/confirmation. BOOL joinAsRouter The parameter is TRUE if the device is attempting to join the network in the capacity of a ZigBee router. It is FALSE otherwise. The parameter is valid in requests to join through association and ignored in requests to join directly or to re-join through orphaning. BOOL rejoinNetwork TRUE: the device is joining directly or rejoining the network using the orphaning procedure. FALSE: the device is requesting to join a network through association. UINT32 scanChannels The five most significant bits (b27, ... ,b31) are reserved. The 27 least significant bits (b0, b1, ... b26) indicate which channels are to be scanned (1 = scan, 0 = do not scan) for each of the 27 valid channels. BYTE scanDuration A value used to calculate the length of time to spend scanning each channel. BYTE powerSource This parameter becomes a part of the CapabilityInformation parameter passed to the mlmeAssociateRequest function that is generated as the result of a successful executing of a NWK join. 0x01: Mains-powered device, 0x00: other power source. BYTE rxOnWhenIdle This parameter indicates whether the device can be expected to receive packets over the air during idle portions of the active portion of its superframe. 0x01: The receiver is enabled when the device is idle. 0x00: The receiver may be disabled when the device is idle. This parameter shall have a value of 0x01 for ZigBee coordinators and ZigBee routers operating in a nonbeacon-oriented network.
18
Rev. 0.1
AN241
BYTE macSecurity This parameter becomes a part of the capabilityInformation parameter passed to the mlmeAssociateRequest function that is generated as the result of a successful executing of a NWK join. 0x01: MAC security enabled. 0x00: MAC security disabled. 5.5.3. Indication Description: This function allows the next higher layer of a ZigBee coordinator or ZigBee router to be notified when a new device has successfully joined its network by association. Indication written to nlmeConfirm global. nlmeConfirm.confirmId = N_JOIN_IND; nlmeConfirm.buffer structure: typedef struct { WORD shortAddress; ADDRESS extendedAddress; BYTE capabilityInformation; }NLME_JOIN_INDICATION; (defined in HS_NET.h) Parameters: WORD shortAddress; The network address of an entity that has been added to the network. ADDRESS extendedAddress; The EUI of the an entity that has been added to the network. BYTE capabilityInformation Bitwise description of the device. b0: Alternate PAN coordinator:Always 0 in ZigBee v1.0 b1: Device Type: 1: Joining device is a router, and joining with joinAsRouter=TRUE. 0: End device or router joining as an end device. b2: Power Source: Set to the lowest order bit of the powerSource parameter passed to the nlmeJoinRequest primitive. 1: mains powered 0: other b3: Receiver on when idle. Set to the lowest order bit of the rxOnWhenIdle parameter passed to the nlmeJoinRequest primitive. 1: receiver enabled when device in idle. 0: receiver may be disabled when device is idle. b4: Reserved. Always 0. b5: Reserved. Always 0 b6: Security Capability. This field shall be set to the value of lowest-order bit of the macSecurity parameter passed to the NLME-JOIN-request primitive. 1: MAC security enabled 0: MAC security disabled b7: Allocate address: Always 1 in ZigBee v1.0. Always allocate the joining device a 16-bit short address.
Results:
Rev. 0.1
19
AN241
5.5.4. Confirm Description: Results: Confirmation written to nlmeConfirm global. nlmeConfirm.confirmId = N_JOIN_CFM; nlmeConfirm.buffer structure: typedef struct{ WORD PANId; NWK_ENUM Status; }NLME_JOIN_CONFIRM; Parameters:
(defined in HS_NET.h)
WORD PANId; The PAN identifier from the NLME-JOIN.request to which this is a confirmation. The 2 highest-order bits of this parameter are reserved and should be set to 0. NWK_ENUM Status INVALID_REQUEST, NOT_PERMITTED or any status value returned from the MLMEASSOCIATE.confirm primitive or the MLME-SCAN.confirm primitive (SUCCESS, CHANNEL_ACCESS_FAILURE, NO_ACK,_NO_DATA, UNAVAILABLE_KEY, FAILED_SECURITY_CHECK).
20
Rev. 0.1
AN241
5.6. NLME-DIRECT-JOIN
5.6.1. Description This primitive manually adds a child device to its neighbor table. It does not communicate or handshake with the added child device. Applicability: Prerequisites: Ability to request applies only to Coordinator or Router-type devices. All end devices are able to accept a direct join request from a parent. Device must be a Coordinator or Router to initiate. Requesting device must know 64-bit address of device to add. Child device must proactively initiate an nlmeJoinRequest(rejoinNetwork=TRUE) to complete re-join.
5.6.2. Request Function Prototype: Parameters: void nlmeDirectJoinRequest(ADDRESS deviceAddress, CAPABILITY_INFORMATION_FIELD capabilityInformation) ADDRESS deviceAddress The IEEE address of the device to be directly joined. BYTE capabilityInformation The operating capabilities of the device being directly joined. Refer to sections 5.5.3 and 6.2.1. 5.6.3. Confirm Description: Results: Confirmation written to nlmeConfirm global. nlmeConfirm.confirmId = N_DJOIN_CFM; nlmeConfirm.buffer structure: typedef struct{ ADDRESS deviceAddress; NWK_ENUM status; }NLME_DIRECT_JOIN_CONFIRM; (defined in HS_NET.h) ADDRESS deviceAddress; IEEE address of the device joined. NWK_ENUM status; SUCCESS: ALREADY_PRESENT: TABLE_FULL: Device already exists in table. No capacity available for additional devices.
Parameters:
Rev. 0.1
21
AN241
5.7. NLME-LEAVE
5.7.1. Description This set of primitives defines how the next higher layer of a device can request to leave or request that another device leaves a network. This set of primitives also defines how the next higher layer of a ZigBee coordinator device can be notified of a successful attempt by a device to leave its network. Applicability: Prerequisites: 5.7.2. Request Description: Function Prototype: Parameters: The Function is used to request that it or another device leaves the network. void nlmeLeaveRequest(ADDRESS deviceAddress) ADDRESS deviceAddress Parent: 64-bit IEEE address of child device to remove from network. Child: NULL to remove itself from network. If the device is a child, a leave indication with a null address argument that the device has been forced to disconnect by its parent. If the devices is a parent, a leave indication shows that a child has proactively removed itself from the network. Indication written to nlmeConfirm global. nlmeConfirm.confirmId = N_LEAVE_IND; nlmeConfirm.buffer structure: typedef struct { ADDRESS extendedAddress; }NLME_LEAVE_INDICATION; Parameters: ADDRESS extendedAddress NULL if this device was removed by a parent device. if a child device has proactively disassociated itself from this parental device. Both child and parent-type devices. Device to be disconnected is currently connected to network.
5.7.3. Indication Description:
Results:
22
Rev. 0.1
AN241
5.7.4. Confirm Description: Results: Confirmation written to nlmeConfirm global. nlmeConfirm.confirmId = N_LEAVE_CFM; nlmeConfirm.buffer structure: typedef struct{ ADDRESS deviceAddress; NWK_ENUM status; }NLME_LEAVE_CONFIRM; (defined in HS_NET.h) Parameters: ADDRESS deviceAddress NULL if device removed itself from a parent. if device is a parent and has removed a child. NWK_ENUM status SUCCESS: INVALID_REQUEST: UNKNOWN_DEVICE: remove an unknown device. Device is not in a network. Issued if leave request made to a coordinator or router to
Rev. 0.1
23
AN241
5.8. NLME-RESET
5.8.1. Description The function is called to request that the NWK layer performs a reset operation. This operation sets NIB values to defaults, resets the MAC layer, and clears network-level parameters such as discovered routes. NLME-RESET must be called immediately on power-up. 5.8.2. Request Function Prototype: Parameters: 5.8.3. Confirm Description: Returned Values: Confirmation by return value of mlmeResetRequest, type NWK_ENUM (See Section "6.1.1. NWK_ENUM" on page 28). Status value returned from the mlmeResetRequest function. SUCCESS: DISABLE_TRX_FAILURE: NWK_ENUM nlmeResetRequest(void) None.
24
Rev. 0.1
AN241
5.9. NLME-SYNC
5.9.1. Description The NLME-SYNC primitive is used by devices in a network to synchronize to a parent node and to request data from the Coordinator or Router. In a non-beacon network, this primitive is simply used by a device to request pending data from the PAN coordinator. The track parameter should always be set to FALSE in non-beacon mode. In a beacon-based network, this primitive serves multiple functions. First, it directs the device's MAC layer to synchronize to the beacon from its parent. The node will continuously track beacons if the track parameter is set to TRUE. Second, it instructs the device to automatically send a data request to the PAN coordinator each time a beacon frame is received indicating that data are waiting for the device. Applicability: Prerequisites: 5.9.2. Request Description: Function Prototype: Parameters: 5.9.3. Indication Description: This function allows the next higher layer to be notified of the loss of synchronization at the MAC sub-layer. Indication written to nlmeConfirm global. According to the NWK specification, this primitive will be generated only when nlmeSyncRequest is called. This primitive will be generated when beacon can not be detected after several beacon periods. Results: 5.9.4. Confirm Description: Returned Values: Confirmation by return value of mlmeSyncRequest, type NWK_ENUM (See Section "6.1.1. NWK_ENUM" on page 28). SUCCESS: SYNC_FAILURE: INVALID_PARAMETER: If unable to synchronize to a parent's beacon. Occurs when track = TRUE on a nonbeacon network. nlmeConfirm.confirmId = N_SYNC_IND The function is called to synchronize or extract data from its ZigBee coordinator or router. NWK_ENUM nlmeSyncRequest(BOOL track) BOOL track Whether the synchronization should be maintained for future beacons or not. Applies to both beacon-based and non-beacon-based networks. Applies to all devices other than Coordinators. Device associated with a network.
Rev. 0.1
25
AN241
5.10. NLME-GET
5.10.1. Description This function allows the application layer to read the value of an attribute from the NIB. Attributes are listed in Section "6.1.2. NWK_NIB_ATTR" on page 28. 5.10.2. Request Function Prototype: Parameters: 5.10.3. Confirm Description: Results: Confirmation written to nlmeConfirm global. nlmeConfirm.confirmId = N_GET_CFM; nlmeConfirm.buffer structure: typedef struct{ NWK_ENUM status; NWK_NIB_ATTR NIBAttribute; WORD NIBAttributeLength; BYTE *pNIBAttributeValue; }NLME_GET_CONFIRM; (defined in HS_NET.h) NWK_ENUM status SUCCESS: UNSUPPORTED_ATTRIBUTE: NWK_NIB_ATTR NIBAttribute See attributes, Section 6.1.2. WORD NIBAttributeLength Length in octets (0x0000 - 0xFFFF) BYTE *pNIBAttributeValue void nlmeGetRequest(NWK_NIB_ATTR NIBAttribute) NWK_NIB_ATTR NIBAttribute The identifier of the NIB attribute to read.
Parameters:
26
Rev. 0.1
AN241
5.11. NLME-SET
5.11.1. Description This function allows the application layer to write the value of an attribute from the NIB. Attributes are listed in Section "6.1.2. NWK_NIB_ATTR" on page 28. 5.11.2. Request Description: Function Prototype: Parameters: This function allows the next higher layer to write the value of an attribute into the NIB. void nlmeSetRequest(NWK_NIB_ATTR NIBAttribute, BYTE NIBAttributeLength, void *pNIBAttributeValue) NWK_ENUM NIBAttribute The identifier of the NIB attribute to be written. WORD NIBAttributeLength The length, in octets, of the attribute value being set. void *pNIBAttributeValue Pointer to the value of the NIB attribute that should be written. 5.11.3. Confirm Description: Results: Confirmation written to nlmeConfirm global. nlmeConfirm.confirmId = N_SET_CFM; nlmeConfirm.buffer structure: typedef struct{ NWK_ENUM status; NWK_NIB_ATTR NIBAttribute; }NLME_SET_CONFIRM; (defined in HS_NET.h)
Rev. 0.1
27
AN241
6. Shared Type Definitions, Structures and Defines
6.1. HS_Net.h
6.1.1. NWK_ENUM BYTE NWK_ENUM; #define #define #define #define #define #define #define #define #define #define SUCCESS NWK_INVALID_PARAMETER INVALID_REQUEST NOT_PERMITTED STARTUP_FAILURE ALREADY_PRESENT SYNC_FAILURE TABLE_FULL UNKNOWN_DEVICE NWK_UNSUPPORTED_ATTRIBUTE 0x00 0xc1 0xc2 0xc3 0xc4 0xc5 0xc6 0xc7 0xc8 0xc9
6.1.2. NWK_NIB_ATTR typedef enum { NWK_BSCN = 0x81, NWK_PASSIVE_ACK_TIMEOUT, NWK_MAX_BROADCAST_RETRIES, NWK_MAX_CHILDREN, NWK_MAX_DEPTH, NWK_MAX_ROUTERS, NWK_NEIGHBOR_TABLE, NWK_NETWORK_BROADCAST_DELIVERY_TIME, NWK_REPORT_CONSTANT_COST, NWK_ROUTE_DISCOVERY_RETRIES_PERMITTED, NWK_ROUTE_TABLE, NWK_SECURE_ALL_FRAMES, NWK_SECURITY_LEVEL, NWK_SYM_LINK, NWK_CAPABILITY_INFORMATION } NWK_NIB_ATTR;
6.2.
mac.h
6.2.1. CAPABILITY_INFORMATION_FIELD typedef struct tag_CAPABILITY_INFORMATION_FIELD { unsigned char AlternatePANcoordiantor :1; unsigned char DeviceType :1; unsigned char PowerSource :1; unsigned char ReceiverOnWhenIdle :1; unsigned char Reserved :2; unsigned char SecurityCapability :1; unsigned char AllocateAddress :1; }CAPABILITY_INFORMATION_FIELD;
28
Rev. 0.1
AN241
6.2.2. MAC_ENUM typedef BYTE MAC_ENUM; #define SUCCESS BEACON_LOSS CHANNEL_ACCESS_FAILURE DENIED DISABLE_TRX_FAILURE FAILED_SECURITY_CHECK FRAME_TOO_LONG INVALID_GTS INVALID_HANDLE INVALID_PARAMETER NO_ACK NO_BEACON NO_DATA NO_SHORT_ADDRESS OUT_OF_CAP PAN_ID_CONFLICT REALIGNMENT TRANSACTION_EXPIRED TRANSACTION_OVERFLOW TX_ACTIVE UNAVAILABLE_KEY UNSUPPORTED_ATTRIBUTE RX_DEFERRED 0 0xE0 0xE1 0xE2 0xE3 0xE4 0xE5 0xE6 0xE7 0xE8 0xE9 0xEA 0xEB 0xEC 0xED 0xEE 0xEF 0xF0 0xF1 0xF2 0xF3 0xF4 0xF5
6.3.
mac_headers.h
6.3.1. ADDRESS typedef union { BYTE Extended[8]; WORD Short[4]; }ADDRESS;
Rev. 0.1
29
AN241
CONTACT INFORMATION
Silicon Laboratories Inc. 4635 Boston Lane Austin, TX 78735 Internet: www.silabs.com
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
30
Rev. 0.1

		

		
			

			▲Up To
				Search▲

		
	
Price & Availability of AN241
	[image:]
	
			

	

	
			
		

				
	
				All Rights Reserved ©
				IC-ON-LINE 2003 - 2022

	

	
			[Add Bookmark] [Contact
				Us] [Link exchange] [Privacy policy]
	
				Mirror Sites : [www.datasheet.hk]
				[www.maxim4u.com] [www.ic-on-line.cn]
				[www.ic-on-line.com] [www.ic-on-line.net]
				[www.alldatasheet.com.cn]
				[www.gdcy.com]
				[www.gdcy.net]

	

	

.
.
.
.
.

		 	We use cookies to deliver the best possible
	web experience and assist with our advertising efforts. By continuing to use
	this site, you consent to the use of cookies. For more information on
	cookies, please take a look at our
	Privacy Policy.	
	X

